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Abstract 

The interface shear strength properties of geogrid-reinforced Construction and Demolition 

(C&D) aggregates were determined using a modified large scale direct shear test (DST) 

apparatus. Comparisons were made between the results of the various C&D aggregates 

reinforced with biaxial and triaxial geogrids as well as with the unreinforced aggregates by 

means of the modified and conventional DST methods. The modified DST method employed, 

sought to increase interlocking between the C&D aggregates with the geogrids and thus 

ascertains the true interface shear strength properties of the recycled demolition aggregates. 

Biaxial and triaxial geogrids were used as the geogrid-reinforcement materials. The C&D 

aggregates tested with the DST were Recycled Concrete Aggregate (RCA), Crushed Brick 

(CB) and Reclaimed Asphalt Pavement (RAP). The modified DST results indicated that the 

interface shear strength properties of the geogrid-reinforced C&D aggregates were higher 

than that of the conventional test method as well as the respective unreinforced materials. 

Geogrid-reinforced RCA was found to have the highest interface peak and residual shear 

strength property of the C&D materials. RAP was found to have the smallest interface shear 

strength properties of the C&D aggregates. The higher stiffness triaxial geogrid attained 

higher interface shear strength properties than that of the lower stiffness biaxial geogrid. The 

modified device also showed some increased measured interface coefficients compared to a 

conventional DST. The geogrid-reinforced recycled C&D aggregates was found to meet the 

peak and residual shear strength requirements for typical construction aggregates used in civil 

engineering applications. 

 

Keywords:  recycled materials; waste; demolition; geogrids; interface shear strength; direct 

shear test.   
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Introduction 

The interface shear strength of geosynthetic-reinforced structures can be determined with the 

usage of the DST apparatus (Liu et al. 2009a, 2009b; Palmeira and Antunes, 2010; Zekkos et 

al. 2010). In recent years, the large scale DST apparatus has been increasingly used to 

determine the interface shear strength of geosynthetic-reinforced structures with various soils, 

aggregates (Liu et al. 2009a, 2009b; Kazimierowicz, 2007; Araujo et al. 2009; Rowe and 

Taechakumthorn, 2011; Palmeira et al. 2010) and other materials such as municipal solid 

waste (Zekkos et al. 2010). 

 

Geogrids are used as a reinforcement material in various geotechnical engineering 

applications such as roads (Palmeira and Antunes, 2010) and railway embankments 

(Arulrajah et al. 2009, Arulrajah et al. 2013a). The drained internal friction angle '  and 

cohesion (c') of geogrid interfaces with soils or aggregates are the key input parameters for 

the design of earth structures reinforced with geogrids. As geogrids have longitudinal and 

transverse ribs, the interaction mechanisms between geogrids with soils or aggregates, under 

direct shear mode, provides frictional resistance between the soil and the surface of the 

geogrids as well as internal shear resistance of the soil and passive resistance of the 

transverse ribs (Liu et al. 2009a, 2009b; Alfaro et al. 1995; Tatlisoz et al. 1998). The 

apertures of geogrids furthermore provide significant passive resistance on geogrid-soil 

interfaces (Bergado et al. 1993).   

 

Interface shear strength properties of soil mass reinforced with geogrid materials has been 

reported by various researchers to be lower than that of the unreinforced control materials in 

direct shear tests by the conventional method, which has been attributed to the lack of 
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interlocking between the geogrids and the soil/aggregates (Liu et al. 2009a, 2009b; Lee and 

Manjunath, 2000; Abu-Farsakh et al. 2007; Ling et al. 2008; McCartney et al. 2009).  

 

A modified testing method has been employed in this research to determine the interface 

shear strength properties of C&D aggregates and to compare the results with the conventional 

test method. The relative displacement between recycled C&D materials and geogrid to be 

mobilized has not been ascertained to date, hence the need for this research to ascertain the 

peak and residual shear strengths of the recycled C&D materials by means of the DST. The 

peak shear strength represents the best case scenario of full mobilization of friction between 

the C&D aggregates and the geogrids, whereas the residual shear strength represents the 

worst case situation for example after failure and hence both peak and residual shear strength 

properties are relevant. 

 

Recycling of C&D waste materials into sustainable civil engineering applications is of global 

importance, as we seek new ways to conserve our natural resources as well as reduce reusable 

waste materials from  being landfilled (Aatheesan et al. 2010; Hoyos et al. 2011; Arulrajah et 

al. 2013b; Rahman et al. 2013). C&D aggregates have recently been found to be viable 

alternative materials in civil engineering applications such as pavements, footpaths and other 

road construction applications. This includes C&D aggregates such as RCA (Gabr and 

Cameron, 2012; Azam and Cameron, 2012; Poon and Chan, 2006a, Poon and Chan 2006b; 

Arulrajah et al. 2012a; Arulrajah et al. 2013c), CB (Aatheesan et al. 2010; Arulrajah et al. 

2011; Arulrajah 2012b), RAP (Taha et al. 2002; Hoyos et al. 2011; Puppala et al. 2011; 

Arulrajah et al. 2013d; Arulrajah et al. 2013e), crushed glass (Ali et al. 2011; Arulrajah et al. 

2013f; Disfani et al. 2011; Disfani et al. 2012; Imteaz et al. 2012) and waste excavation rock 

(Arulrajah et al. 2012c). However, the properties of these alternative C&D aggregates are not 
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fully understood and hence their usage in civil engineering applications is still limited. 

Research and evaluation of the geotechnical engineering properties of these C&D aggregates, 

such as their usage in reinforcement with geogrids as in this study, is therefore required to 

understand the behaviour of these alternative materials when reinforced with geogrids.  

 

 

Experimental Procedure   

A large scale DST apparatus measuring 305 mm in length x 305 mm in width x 204 mm in 

depth was used in the experimental works. The testing apparatus has two boxes, a fixed upper 

box and a moveable lower box; each 100 mm in depth. The large scale DST apparatus was 

undertaken by the conventional test method as well as compared with a modified method 

with the use of a geosynthetic-clamping steel frame of 7 mm thickness attached to the top of 

the lower shear box. Testing of geogrids with the modified shear box arrangement would 

induce a shear plane 7 mm above the geogrid placement level. Fig. 1(a) presents a schematic 

diagram of the large scale DST apparatus when used by the modified testing method. The 

steel frame and geogrid were fixed to the lower shear box using several screws and a rough 

surface plate is shown in Fig. 1(b). The steel frame used just fitted into the shear box and had 

a provision to fix geogrid in the back and front sides of the steel frame. The authors’ 

hypothesis is that a stiffened zone is present below the conventional DST shear plane leading 

to higher peak and residual shear stresses. The works of Konietzky et al. (2004) and 

McDowell et al. (2006) is in line with this hypothesis. A 7 mm thick steel frame was selected 

as the aggregate size used for local road pavement subbase applications is typically less than 

14 mm. The concept was to induce a shearing plane at the midpoint of the aggregates and to 

achieve gridlock interaction. The geogrid was placed 7 mm below the shear plane to ensure 

the maximum size of particles interlock with the geogrid as well as being equally distributed 
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in the upper and lower boxes. A steel plate was also used to prevent slippage of the geogrid 

during the shear tests. The geogrid fixed at the shear plane in the conventional DST apparatus 

moves with the lower shear box on application of shearing load and develops sagging and 

slipping tendencies. Hence, to prevent sagging and slipping, the geogrid in the modified 

method was placed 7 mm below the shearing plane where sufficient geogrid interaction is 

achieved without sagging or slipping. At this location, the provision of a smooth interface is 

avoided and significant interlock is realised thereby better representing the true field 

conditions. 

 

Fig. 2(a) and Fig. 2(b) show the interaction mechanism between aggregates and geogrid on 

application of shear and normal load for the conventional and modified DST, respectively. 

The mechanism shown in Fig. 2(b) shows the additional shear resistance and friction that 

develops by using the modified DST method due to geogrid placed below the critical shear 

plane. 

 

The large scale DST was undertaken on the reinforced C&D aggregates with Biaxial 

(Biaxial) geogrids with square apertures and Triaxial (Triaxial) geogrids with triangular 

apertures. Control tests were also undertaken on unreinforced C&D aggregates to study the 

effect of the geogrid-reinforcement. Commercially available biaxial geogrids (Biaxial) with 

an ultimate strength of 20 kN/m and triaxial geogrids (Triaxial) with a slightly higher 

ultimate strength of 32 kN/m were used in the tests. Table 1 summarises the physical and 

geotechnical properties of the geogrids. The C&D aggregates tested were RCA, CB and RAP 

obtained from a recycling site in Melbourne, Australia. The C&D aggregates had a maximum 

particle size of 19 mm.  
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Physical tests undertaken on the C&D aggregates, included modified compaction test, 

particle density, particle size distribution and water absorption. Modified compaction tests 

were conducted according to ASTM D1557 (2009) to determine the maximum dry density 

and optimum moisture content of the C&D aggregates. A cylindrical mould having an 

internal diameter of 152.4 mm was used in the modified compaction tests.  

 

The particle size distribution tests of the samples were conducted by sieve analysis according 

to ASTM D422-63 (2007). CBR tests were carried out according to ASTM D1883 (2007) on 

specimens subjected to modified Proctor compaction effort at the optimum water content and 

soaked for 4 days to simulate the worst-case scenario.  

 

Organic content tests were performed in accordance with ASTM D2974 (2007). The loss by 

ignition method was used to determine the organic content of the samples. Particle density 

and water absorption tests of coarse aggregate (retained on 4.75 mm sieve) and fine aggregate 

(passing through 4.75 mm sieve) were carried out according to AS1141.5 (SAA 2000a) and 

AS1141.6.1 (SAA 2000b), respectively.   

 

For the DST, oven dried C&D samples were mixed with water at optimum moisture content 

and kept in a cool place for approximate 12 hours in a closed container to ensure that water 

was mixed uniformly with the samples. Initially the lower and upper boxes were clamped 

when preparing samples for the tests. Lubricating oil was used on the platform of the shear 

box to enable easy movement. The samples were compacted in the shear box in three layers 

by using a vibratory compactor at 98% of maximum dry density.  
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The large DST was conducted for the geogrid-reinforced and unreinforced C&D aggregates 

at normal stresses of 30 kPa, 60 kPa and 120 kPa. The horizontal displacements, vertical 

displacements and shear stresses were recorded with LVDTs and load cells which were 

computer controlled with a specialized software program. When the consolidation stage for 

the test was completed, the connection between the lower and upper boxes was released, 

which provided an approximate 2 mm gap between the upper and lower boxes for friction 

minimization. The tests were conducted as per ASTM D5321 (2008). The tests were 

terminated once the horizontal shear displacement reached approximately 75 mm. The peak 

and residual shear strength of the unreinforced and reinforced C&D aggregates from the DST 

were obtained from the shear stress and horizontal displacement output graphs. 

 

Results and Discussion 

The physical properties of RCA, CB and RAP aggregates obtained from the laboratory tests 

are summarized in Table 2. The physical properties were tested from three replicate samples 

for each test. Three samples of each C&D materials was tested to maintain consistency of the 

results, the ranges and mean values of which are presented in Table 2. The variability of the 

test results was approximately 5-10% and shows that there is little variation as the tests were 

performed under same laboratory conditions. The small variation in the test results satisfies 

the specific requirements for each test. The particle-size distribution results for RCA, CB and 

RAP undertaken before and after compaction with modified compaction effort, is shown in 

Fig. 3. It is observed that there is only minimal breakdown of the C&D aggregates noted after 

compaction as compared to before compaction. The particle size distribution curves for the 

C&D aggregates were consistent with the requirements of typical aggregates in civil 

engineering applications (Aatheesan et al. 2010; Arulrajah 2011) which indicates the 
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materials as suitable aggregates for civil engineering applications such as pavement 

subbases/bases and footpaths.  

 

The particle densities of coarse aggregates (retained on 4.75 mm sieve) are generally higher 

than that of fine aggregates (passing 4.75 mm sieve) except for CB. The water absorptions of 

coarse aggregates were less than the fine aggregates except for CB. The CBR tests results for 

RCA and CB were found to be within values of 80-120 normally specified for pavement base 

and subbase aggregates (Arulrajah 2013b). The organic content of the C&D aggregates was 

low. The modified compaction results for the RCA, CB and RAP were found to be typical of 

that specified of construction aggregates. 

 

The DST were conducted at three different normal stresses for each conventional and 

modified test. The samples were compacted with modified compaction efforts and a constant 

shear displacement rate of 0.025 mm/min was maintained throughout the shearing stage.  The 

DST results were obtained from computer controlled program. The large scale DST results 

were analysed to determine the effect of interface shear strength of the geogrid-reinforced 

C&D aggregates by the conventional and modified method.  

 

Fig. 4, presents the shear stress and vertical displacement versus horizontal displacement 

curves for unreinforced and reinforced RCA. Shear stress is observed to increase for the 

RCA, RCA+Biaxial and RCA+Triaxial with an increase in the normal stress. The shear stress 

is observed to reach a peak shear stress and then levels off to a residual shear stress under 

large strain. The peak interface shear stress of reinforced RCA+Biaxial and RCA+Triaxial is 

found to give results that are higher than the peak shear stress of unreinforced RCA. The 

shear stress of RCA+Triaxial is found to be higher than that of RCA+Biaxial, which is 
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expected, as the stiffness of the triaxial geogrid is higher than that of the biaxial geogrid. In 

Fig. 4, positive vertical displacement indicates contractive behaviour while negative vertical 

displacement indicates dilative behaviour. The results indicate that an initial vertical 

contraction takes place until the sample cannot compress which is followed by dilation. The 

samples are observed to behave like dense materials which similarly show increasing higher 

compression with an increase in normal stress. Similar behaviour has been reported (Disfani 

et al. 2011) for DST on dense recycled glass. An increase in normal stress is observed to 

increase the tendency of compression. The contraction effect at the beginning of the test is 

observed to become more noticeable as the normal stress levels are increased.  

 

Fig. 5 presents the shear stress and vertical displacement versus horizontal displacement 

curves for unreinforced and reinforced CB with geogrids by the modified DST method. Fig. 6 

presents the shear stress and vertical displacement versus horizontal displacement curves for 

unreinforced and reinforced RAP by the modified DST method. Similar trends are apparent 

in these figures for the modified DST methods, with similar higher shear strengths observed 

for the geogrid-reinforced aggregates as compared to the respective unreinforced aggregates 

and similar higher shear stresses recorded for the Triaxial as compared to the Biaxial 

geogrids. 

 

The shear strength parameters of cohesion (c') and internal friction angle (ɸ) of the C&D 

materials were obtained from Mohr Coulomb failure envelope line. Fig. 7 presents the Mohr 

Coulomb failure envelope lines from peak shear stress for the conventional and modified 

DST. Fig. 8 presents the residual shear stresses for the conventional and modified DST. The 

peak and residual shear stresses parameters are summarised in Table 3. Table 3 also presents 

the comparison results of peak and residual shear strengths for the geogrid-reinforced C&D 
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aggregates by using the conventional and modified interface shear strength testing methods as 

well as the unreinforced C&D aggregates. RCA has shown high apparent cohesion values for 

the reinforced and the unreinforced DST because RCA has gained strength from further 

hydration by absorbing water from the mix. Touahamia et al. (2002) and Piratheepan et al. 

(2013) have reported similar high apparent cohesion value for RCA for the same reason. The 

crushed clay particles from the CB during compaction has mixed with water and formed a 

binding paste, leading to a high apparent cohesion value (Piratheepan et al. 2013). The 

apparent cohesion value of RAP is not as high as that of RCA and CB, however, the small 

apparent cohesion in RAP can be attributed to the presence of bitumen which will bind 

during compaction (Piratheepan et al. 2013). It is apparent from these figures and table that 

the interface shear strength and the interaction between the geogrid-reinforced C&D 

aggregates is higher than that of the unreinforced C&D aggregates and for the Triaxial as 

compared to the Biaxial geogrid.  

 

The interface or interaction between geosynthetics-soil reinforcement behaviour can be 

expressed as the coefficient of soil-reinforcement friction (Liu et al. 2009b; Tatlisoz et al. 

1998; Bergado et al. 1993; Lee and Manjunath 2000). The interface shear strength coefficient 

is obtained from the following equation.  

        Eq. (1) 

Where α is the interface shear strength coefficient, τreinforced and τunreinforced are the shear 

strength values obtained from reinforced and unreinforced DST, respectively. Table 4 

presents the interface shear strength coefficient values for the geogrid reinforced C&D 

aggregates by using conventional and modified interface shear strength testing methods. 

From Table 4, it is apparent that the interface coefficient between the geogrid-reinforced 

C&D aggregates improved in the modified test setup as compared to the conventional method 
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as well as the respective unreinforced materials.  It is also apparent that the interface 

coefficient is higher for the triaxial geogrids as compared to biaxial geogrids, which is 

consistent with the findings of the peak and residual interface shear strengths. 

 

Granular soils, such as dense sands and gravels, specified in geotechnical engineering 

applications typically have peak friction values of 40 to 48 degrees and residual values of 32 

to 36 degrees (Sivakugan and Das, 2010). Based on the modified DST results, the geogrid-

reinforced and unreinforced C&D aggregates would meet the shear strength requirements for 

usage as a construction material in civil engineering applications.  

 

The interface shear strength properties of the geogrid-reinforced C&D aggregates were found 

to be consistently higher than that of the respective unreinforced C&D material in the 

modified DST set-up. The interface peak shear strength values of the C&D aggregates were 

noted to be higher than that of the respective residual values, which is as expected. The 

interface shear strength properties of RCA is observed to be higher than that of CB while 

RAP is noted to have the smallest interface shear strength properties of the C&D aggregates. 

The higher strength Triaxial geogrids was found to attain higher interface shear strength 

properties than that of the lower strength Biaxial geogrids.  

 

The interlocking mechanism is an important parameter for the performance of any geogrid-

reinforced pavement subbase materials. Coarse particles placed in the geogrid’s apertures 

lock them in place while applying lateral and vertical forces. This importance of the 

interlocking mechanism between geogrid and aggregates has been discussed by Jewell et al. 

(1984). Results obtained from DST with rectangular and triangular shaped apertures, 

indicates that triangular shape geogrid provided significant stiffness due to them having 
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constraints ribs. The interlock between geogrid and aggregate depends on factors such as 

aggregate particle size, aperture size and the mechanical properties of the geogrid (Tutumluer 

et al. 2012). 

 

In this study laboratory tests were undertaken to determine the usage of geogrid-reinforced 

aggregates for subbase applications. Factors that affect their usage include geogrid types, size 

and shape as well as the aggregates shape, texture, angularity, gradation, moisture content 

and density. The relative shear stress and displacement between soil and geogrid mobilized 

during the interface DST also depends on the aggregate quality, reinforcement quality and 

reinforcement length. 

 

The traditional shearing plane in the conventional DST is set at the weak point at the geogrid 

placement layer and this is not the reality in the field. In this research, the critical shearing 

plane has been induced to occur at a distance below the traditional shearing plane. In this 

research, the assumption has been made that the shearing plane should be induced at half the 

aggregate size of the geogrid. This is a reasonable assumption for these sizes of recycled 

aggregates. Mobilization of C&D materials to peak strength can be achieved with small 

strain, as can be seen in the DST test results.  

 

The peak and residual shear strengths as determined by the DST are not essential for the 

study of pavement subbase responses which tends to be more inclined towards dynamic tests, 

such as the repeat load triaxial. However, the authors have undertaken this research to study 

the fundamental behaviour of the interaction between geogrids and C&D materials as these 

are relatively new alternative materials for which there is still little fundamental 

understanding of their properties. 
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Conclusions 

A large-scale DST apparatus was used to determine the interface shear strength properties of 

geogrid-reinforced RCA, CB and RAP by means of a modified testing method and results 

compared with the conventional testing method. The modified test method was undertaken 

with the use of a geosynthetic-clamping steel frame attached to the top of the lower shear 

box. Testing of geogrids with this modified shear box arrangement would induce a shear 

plane above the geogrid placement level, thereby increasing the interlocking between the 

geogrids with the aggregates.  

 

Tests were undertaken on each of the respective C&D aggregates when reinforced with 

Biaxial and Triaxial geogrids by both the conventional and modified test methods. Tests were 

also undertaken on unreinforced C&D aggregates for comparisons. The results of the tests 

were compared between the reinforced with the conventional and a modified test method, as 

well as with the unreinforced C&D materials.  

 

The interface shear strength properties of the geogrid-reinforced C&D aggregates for the 

modified test method were found to be consistently higher than that of the conventional test 

method and the respective unreinforced material. The interface peak shear strength values of 

the C&D aggregates were higher than that of the respective residual shear strength values. 

The interface shear strength properties of RCA was consistently higher than that of CB while 

RAP had the lowest interface shear strength properties of the C&D aggregates for both the 

conventional and modified test methods.  

 

The higher stiffness triaxial geogrid was found to attain higher interface shear strength 

properties than that of the lower stiffness biaxial geogrid. The interface coefficient between 
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the geogrid-reinforced C&D aggregates improved consistently in the modified test setup as 

compared to the conventional test methods and for the respective unreinforced materials.  The 

interface coefficient was found to be higher for the triaxial geogrid as compared to the biaxial 

geogrid, which is consistent with the findings of the peak and residual interface shear 

strengths. The interface shear strength coefficients were obtained from the peak shear 

strength of geogrid-reinforced and unreinforced materials. The results show that the interface 

shear strength coefficient values from the modified DST results showed some increased 

measured interface coefficients compared to the conventional DST.  This is due to extra shear 

resistance between aggregate and geogrid in the modified test set-up. The interface 

coefficients depend on the material quality, geogrid quality and applying load. The modified 

DST apparatus is hence found to be suitable for simulating the true field behavior of 

pavement subbase materials.  

The modified DST method was found to improve the interlocking between the geogrids and 

the recycled C&D aggregates. The geogrid-reinforced recycled C&D aggregates was found to 

meet the peak and residual shear strength requirements for typical construction aggregates 

used in civil engineering applications. 
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Table 1: Physical and mechanical properties of the geogrids 

Properties Biaxial Triaxial 

Ultimate Tensile Strength (kN/m) 20 32 

Approximate Strain (%) 11 18 

Junction Strength (kN/m) 95 135 

Unit weight (kg/m2) 0.22 0.25 

Polymer Polypropylene Polypropylene 

Junction Efficiency (%) -- 90 

Aperture size (mm) 39×39 46×46×46 
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Table 2. Physical properties of C&D aggregates. 

Geotechnical Properties 
RCA CB RAP 

Range Mean Range Mean Range Mean 

Particle density-coarse (kN/m3) 25.5-27.0 26.50 23.2-24.5 23.6 21.20-24.5 23.0 

Particle density-fine (kN/m3) 24.0-26.5 25.50 23.5-25.8 24.3 22.00-24.0 22.9 

Water absorption-coarse (%) 6.5-7.5 6.70 13.0-14.2 13.76 11.50-12.7 12.0 

Water absorption-fine (%) 6.5-7.5 7.10 9.5-11.0 10.3 13.05-14.8 13.9 

Organic content (%) 1.7-2.1 1.80 1.75-2.1 2.0 3.25-4.7 4.0 

Max dry density (kN/m3) 19.4-21.0 20.4 18.7-21.5 20.0 17.4-20.5 19.0 

Optimum moisture content (%)      11.9-13.2 12.5 12.0-13.5 12.7 7.5-9.2 8.3 

California Bearing Ratio (%)   166-175 172 127-142 135 31-46 39 
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Table 3: Comparison of interface shear strength properties of geogrid-reinforced C&D aggregates by the conventional and modified DST 

methods. 

C&D 

material 
Geogrid 

Apparent cohesion (c') (kPa) Interface angle (ɸ') 

Peak Residual Peak Residual 

Conventional Modified Conventional Modified Conventional Modified Conventional Modified 

RCA - 95 - 80 - 65 - 39 - 

CB - 87 - 30 - 57 - 41 - 

RAP - 15 - 21 - 45 - 38 - 

RCA Biaxial 75 108 25 10 50 69 39 67 

CB Biaxial 67 95 15.5 4.5 45 64 39 68 

RAP Biaxial 6.5 30 12.5 35 40 47 37 23 

RCA Triaxial 83 114 50 12.5 52 71 35 68 

CB Triaxial 80 100 20 12.5 49 66 40 68 

RAP Triaxial 13 39 3.5 36 42 49 40 50 
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Table 4: Comparison of interface peak shear strength coefficients of geogrid-reinforced C&D aggregates by the conventional and modified DST 

methods. 

C&D 

Material 
Geogrid 

Interface coefficient (α) 
Mean interface coefficient 

(μα) 
Normal stress (kPa) 

30 60 120 
Conventional Modified Conventional Modified Conventional Modified Conventional Modified 

RCA - 1.00 - 1.00 - 1.00 - 1.00 - 

CB - 1.00 - 1.00 - 1.00 - 1.00 - 

RAP - 1.00 - 1.00 - 1.00 - 1.00 - 

RCA Biaxial 0.66 1.11 0.69 1.24 0.61 1.17 0.65 1.17 

CB Biaxial 0.70 1.11 0.68 1.22 0.64 1.18 0.67 1.17 

RAP Biaxial 0.73 1.36 0.73 1.25 0.80 1.15 0.75 1.25 

RCA Triaxial 0.72 1.19 0.74 1.31 0.65 1.27 0.71 1.26 

CB Triaxial 0.80 1.19 0.83 1.28 0.74 1.27 0.79 1.25 

RAP Triaxial 0.89 1.60 0.87 1.43 0.88 1.28 0.88 1.44 
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Modified DST: RAP+Biaxial (c'=35 kPa; '=36 )

Modified DST: RAP+Triaxial (c'=23 kPa; '=50 )
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